Current status of phosphine resistance in Indian field populations of Tribolium castaneum and its influence on antioxidant enzyme activities
Rajashekar, Y., Gunasekaran, N. & Shivanandappa, T. Insecticidal activity of the root extract of Decalepis hamiltonii against stored product insect pests and its application in grain protection. J. Food Sci. Technol. 47(3), 310–314 (2010).
Google Scholar
Hagstrum, D. W. & Phillips, T. W. Evolution of stored-product entomology: protecting the world food supply. Annu. Rev. Entomol. 62, 379–397 (2017).
Google Scholar
El-Mofty, M. M., Sakr, S. A., Osman, S. I. & Toulan, B. A. Carcinogenic effect of biscuits made of flour infested with Tribolium castaneum in Bufo regularis. Oncology 46(1), 63–65 (1989).
Google Scholar
Bell, C. H. Fumigation in the 21st century. Crop. Prot. 19, 563–569 (2000).
Google Scholar
Nayak, M. K., Daglish, G. J., Phillips, T. W. & Ebert, P. R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entom. 65, 333–350 (2020).
Google Scholar
Zettler, J. L. & Cuperus, G. W. Pesticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) in wheat. J. Econ. Entomol. 83, 1677–1681 (1990).
Google Scholar
Opit, G. P., Phillips, T. W., Aikins, M. J. & Hasan, M. M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 105, 1107–1114 (2012).
Google Scholar
Jagadeesan, R., Collins, P. J., Daglish, G. J., Ebert, P. E. & Schlipalius, D. I. Phosphine resistance in the rust red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): inheritance, gene interactions and fitness costs. PLoS ONE 7, 1–12 (2012).
Koçak, E., Yilmaz, A., Alpkent, Y. N. & Ertürk, S. Phosphine resistance to some coleopteran pests in stored grains across Turkey. In Proc Of the 11th Int. Conf. on the IOBC-WPRS Bulletin (eds. Trematerra, P. & Trdan, S.) Vol. 130 303–310 (2018).
Agrafioti, P., Athanassiou, C. G. & Nayak, M. K. Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. J. Stored Prod. Res. 82, 40–47 (2019).
Thakore, Y. The biopesticide market for global agricultural use. Ind. Biotechnol. 2(3), 194–208 (2006).
Mau, Y. S., Collins, P. J., Daglish, G. J., Nayak, M. K. & Ebert, P. R. The rph2 gene is responsible for high level resistance to phosphine in independant field strains of Rhyzopertha dominica. PLoS ONE 7, e34027 (2012).
Google Scholar
Schlipalius, D. I. et al. A core metabolic enzyme mediates resistance to phosphine gas. Science 338, 807–810 (2012).
Google Scholar
Paul, A., Radhakrishnan, M., Anandakumar, S., Shanmugasundaram, S. & Anandharamakrishnan, C. Disinfestation techniques for major cereals: A status report. Compr. Rev. Food Sci. Food Saf. 19(3), 1125–1155 (2020).
Google Scholar
Faggio, C., Pagano, M., Alampi, R., Vazzana, I. & Felice, M. R. Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Aquat. Toxicol. 180, 258–265. https://doi.org/10.1016/j.aquatox.2016.10.010 (2016).
Google Scholar
Pena-Ahumada, A., Kahmann, U., Dietz, K. J. & Baier, M. Regulation of peroxiredoxin expression versus expression of Halliwell-Asada-Cycle enzymes during early seedling development of Arabidopsis thaliana. Photosynth. Res. 89(2), 99–112. https://doi.org/10.1007/s11120-006-9087-3 (2006).
Google Scholar
Ighodaro, O. & Akinloye, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 54(4), 287–293 (2018).
Bhattacharjee, S. Reactive Oxygen Species in Plant Biology 107–125 (Springer India, 2019).
FAO. Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides: Tentative method for adults of some stored cereals, with methyl bromide and phosphine: Method FAO n.16. FAO Plant Prot. Bull. 23, 12–25 (1975).
Ranjith, H. V., Sagar, D., Kalia, V. K., Dahuja, A. & Subramanian, S. Differential activities of antioxidant enzymes, superoxide dismutase, peroxidase, and catalase vis-à-vis phosphine resistance in field populations of lesser grain borer (Rhyzopertha dominica) from India. Antioxidants 12, 270. https://doi.org/10.3390/antiox12020270 (2023).
Google Scholar
Beer, R. F. & Sizer, I. W. A. spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952).
Armstrong, D., Rinehart, R., Dixon, L. & Reigh, D. Changes of peroxidase with age in Drosophila. J. Age 1, 8–12 (1978).
Google Scholar
Kakkar, P., Das, B. & Vishwanathan, P. N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 21, 130–132 (1984).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Finney, D. J. Probit Analysis 3rd edn, 333 (Cambridge University Press, 1971).
Google Scholar
Sciuto, A. M., Wong, B. J., Martens, M. E., Hoard-Fruchey, H. & Perkins, M. W. Phosphine toxicity: A story of disrupted mitochondrial metabolism. Ann. N. Y. Acad. Sci. 1374, 41–51 (2016).
Google Scholar
Rajendran, S. Inhibition of hatching of Tribolium castaneum by phosphine. J. Stored Prod. Res. 36, 101–106 (2000).
Google Scholar
Ahmedani, M. S., Shaheen, N., Ahmedani, M. Y. & Aslam, M. Status of phosphine resistance in khapra beetle, Trogoderma granarium (Everts) strains collected from remote villages of Rawalpindi district. Pak. Entomol. 29, 95–102 (2007).
Riaz, T., Shakoori, F. R. & Ali, S. S. Toxicity of phosphine against tolerant and susceptible populations of Trogoderma granarium collected from Punjab, Pakistan. Punjab Univ. J. Zool. 31, 2530 (2016).
Pimentel, M. A. G., Faroni, L. R. D. A., Guedes, R. N. C., Sousa, A. H. & Tótola, M. R. Phosphine resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Stored Prod. Res. 45, 71–74 (2009).
Google Scholar
Ramya, R. S., Srivastava, C. & Subramanian, S. Monitoring of phosphine resistance in Indian populations of Tribolium castaneum (Herbst) from stored wheat. Indian J. Entomol. 80, 19–23 (2018).
Lorini, I., Collins, P. J., Daglish, G. J., Nayak, M. K. & Pavic, H. Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Pest Manag. Sci. 63, 358–364 (2007).
Google Scholar
Pimentel, M. A. G., Farroni, L. R. D. A., da Silva, F. H., Batista, M. D. & Guedes, R. N. C. Spread of phosphine resistance among Brazilian populations of three species of stored product insects. Neotrop. Entomol. 39, 101–107 (2010).
Google Scholar
Emery, R. N., Nayak, M. K. & Holloway, J. C. Lessons learned from phosphine resistance monitoring in Australia. Stewart Postharvest. Rev. 3, 6 (2011).
Hernandez Nopsa, J. F. et al. Ecological networks in stored grain: Key postharvest nodes for emerging pests, pathogens, and mycotoxins. BioScience 65, 985–1002 (2015).
Google Scholar
Nguyen, T. T., Collins, P. J., Duong, T. M., Schlipalius, D. I. & Ebert, P. R. Genetic conservation of phosphine resistance in the rice weevil Sitophilus oryzae (L.). J. Hered. 107, 228–237 (2016).
Google Scholar
Cato, A. J., Elliott, B., Nayak, M. K. & Phillips, T. W. Geographic variation in phosphine resistance among North American populations of the red flour beetle. J. Econ. Entomol. 110, 1359–1365 (2017).
Google Scholar
Wakil, W., Kavallieratos, N. G., Usman, M., Gulzar, S. & El-Shafie, H. A. Detection of phosphine resistance in field populations of four key stored-grain insect pests in Pakistan. Insects 12(4), 288 (2021).
Google Scholar
Nath, N. S., Bhattacharya, I., Tuck, A. G., Schlipalius, D. I. & Ebert, P. R. Mechanism of phosphine toxicity. J. Toxic. https://doi.org/10.1155/2011/494168 (2011).
Google Scholar
Sohn, H. Y., Kwon, C. S., Kwon, G. S., Lee, J. B. & Kim, E. Induction of oxidative stress by endosulphan and protective effect of lipid-soluble anti-oxidants against endosulphan-induced oxidative damage. Toxicol. Lett. 151, 357–365 (2004).
Google Scholar
Chaudhry, M. Q. & Price, N. R. Comparison of the oxidant damage induced by phosphine and the uptake and tracheal exchange of 32P-radiolabelled phosphine in the susceptible and resistant strains of Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Pestic. Biochem. Physiol. 42, 167–179 (1992).
Google Scholar
Valmas, N., Zuryn, S. & Ebert, P. R. Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death. Toxicology 252, 33–39 (2008).
Google Scholar
Hsu, C. H., Han, B., Liu, M., Yeh, C. & Casida, J. E. Phosphine-induced oxidative damage in rats: attenuation by melatonin. Free Radic. Biol. Med. 28, 636–642 (2000).
Google Scholar
Hsu, C. H., Quistad, G. B. & Casida, J. E. Phosphine induced oxidative stress in Hepa 1c1c7 cells. Toxicol. Sci. 46, 204–210 (1998).
Google Scholar
Finkel, T. & Holbrook, N. J. Oxidants oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).
Google Scholar
Liu, T., Li, L., Zhang, F. & Wang, Y. Transcriptional inhibition of the Catalase gene in phosphine-induced oxidative stress in Drosophila melanogaster. Pestic. Biochem. Phys. 124, 1–7 (2015).
Google Scholar
Price, N. R. & Dance, S. J. Some biochemical aspects of phosphine action and resistance in three species of storage product beetles. Comp. Biochem. Physiol. 16, 277–281 (1983).
Gao, X. W. Comparison of specific activity of catalase in the phosphine-resistant and phosphine-susceptible strains of red flour beetle Tribolium castaneum (Herbst) (2009).
Bolter, C. J. & Chefurka, W. The effect of phosphine treatment on superoxide dismutase, catalase, and peroxidase in the granary weevil, Sitophilus granarius. Pestic. Biochem. Physiol. 36, 52–60 (1990).
Google Scholar
Yadav, S. K., Srivastava, C. & Sabtharishi, S. Phosphine resistance and antioxidant enzyme activity in Trogoderma granarium Everts. J. Stored Prod. Res. 87, 101636 (2020).
Crédito: Link de origem



Comentários estão fechados.