Current status of phosphine resistance in Indian field populations of Tribolium castaneum and its influence on antioxidant enzyme activities

  • Rajashekar, Y., Gunasekaran, N. & Shivanandappa, T. Insecticidal activity of the root extract of Decalepis hamiltonii against stored product insect pests and its application in grain protection. J. Food Sci. Technol. 47(3), 310–314 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagstrum, D. W. & Phillips, T. W. Evolution of stored-product entomology: protecting the world food supply. Annu. Rev. Entomol. 62, 379–397 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • El-Mofty, M. M., Sakr, S. A., Osman, S. I. & Toulan, B. A. Carcinogenic effect of biscuits made of flour infested with Tribolium castaneum in Bufo regularis. Oncology 46(1), 63–65 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Bell, C. H. Fumigation in the 21st century. Crop. Prot. 19, 563–569 (2000).

    CAS 

    Google Scholar 

  • Nayak, M. K., Daglish, G. J., Phillips, T. W. & Ebert, P. R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entom. 65, 333–350 (2020).

    CAS 

    Google Scholar 

  • Zettler, J. L. & Cuperus, G. W. Pesticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) in wheat. J. Econ. Entomol. 83, 1677–1681 (1990).

    CAS 

    Google Scholar 

  • Opit, G. P., Phillips, T. W., Aikins, M. J. & Hasan, M. M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 105, 1107–1114 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Jagadeesan, R., Collins, P. J., Daglish, G. J., Ebert, P. E. & Schlipalius, D. I. Phosphine resistance in the rust red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): inheritance, gene interactions and fitness costs. PLoS ONE 7, 1–12 (2012).

    Google Scholar 

  • Koçak, E., Yilmaz, A., Alpkent, Y. N. & Ertürk, S. Phosphine resistance to some coleopteran pests in stored grains across Turkey. In Proc Of the 11th Int. Conf. on the IOBC-WPRS Bulletin (eds. Trematerra, P. & Trdan, S.) Vol. 130 303–310 (2018).

  • Agrafioti, P., Athanassiou, C. G. & Nayak, M. K. Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. J. Stored Prod. Res. 82, 40–47 (2019).

    Google Scholar 

  • Thakore, Y. The biopesticide market for global agricultural use. Ind. Biotechnol. 2(3), 194–208 (2006).

    Google Scholar 

  • Mau, Y. S., Collins, P. J., Daglish, G. J., Nayak, M. K. & Ebert, P. R. The rph2 gene is responsible for high level resistance to phosphine in independant field strains of Rhyzopertha dominica. PLoS ONE 7, e34027 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlipalius, D. I. et al. A core metabolic enzyme mediates resistance to phosphine gas. Science 338, 807–810 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Paul, A., Radhakrishnan, M., Anandakumar, S., Shanmugasundaram, S. & Anandharamakrishnan, C. Disinfestation techniques for major cereals: A status report. Compr. Rev. Food Sci. Food Saf. 19(3), 1125–1155 (2020).

    PubMed 

    Google Scholar 

  • Faggio, C., Pagano, M., Alampi, R., Vazzana, I. & Felice, M. R. Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Aquat. Toxicol. 180, 258–265. https://doi.org/10.1016/j.aquatox.2016.10.010 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pena-Ahumada, A., Kahmann, U., Dietz, K. J. & Baier, M. Regulation of peroxiredoxin expression versus expression of Halliwell-Asada-Cycle enzymes during early seedling development of Arabidopsis thaliana. Photosynth. Res. 89(2), 99–112. https://doi.org/10.1007/s11120-006-9087-3 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ighodaro, O. & Akinloye, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 54(4), 287–293 (2018).

    Google Scholar 

  • Bhattacharjee, S. Reactive Oxygen Species in Plant Biology 107–125 (Springer India, 2019).

  • FAO. Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides: Tentative method for adults of some stored cereals, with methyl bromide and phosphine: Method FAO n.16. FAO Plant Prot. Bull. 23, 12–25 (1975).

    Google Scholar 

  • Ranjith, H. V., Sagar, D., Kalia, V. K., Dahuja, A. & Subramanian, S. Differential activities of antioxidant enzymes, superoxide dismutase, peroxidase, and catalase vis-à-vis phosphine resistance in field populations of lesser grain borer (Rhyzopertha dominica) from India. Antioxidants 12, 270. https://doi.org/10.3390/antiox12020270 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beer, R. F. & Sizer, I. W. A. spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952).

    Google Scholar 

  • Armstrong, D., Rinehart, R., Dixon, L. & Reigh, D. Changes of peroxidase with age in Drosophila. J. Age 1, 8–12 (1978).

    CAS 

    Google Scholar 

  • Kakkar, P., Das, B. & Vishwanathan, P. N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 21, 130–132 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • Finney, D. J. Probit Analysis 3rd edn, 333 (Cambridge University Press, 1971).

    MATH 

    Google Scholar 

  • Sciuto, A. M., Wong, B. J., Martens, M. E., Hoard-Fruchey, H. & Perkins, M. W. Phosphine toxicity: A story of disrupted mitochondrial metabolism. Ann. N. Y. Acad. Sci. 1374, 41–51 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajendran, S. Inhibition of hatching of Tribolium castaneum by phosphine. J. Stored Prod. Res. 36, 101–106 (2000).

    CAS 

    Google Scholar 

  • Ahmedani, M. S., Shaheen, N., Ahmedani, M. Y. & Aslam, M. Status of phosphine resistance in khapra beetle, Trogoderma granarium (Everts) strains collected from remote villages of Rawalpindi district. Pak. Entomol. 29, 95–102 (2007).

    Google Scholar 

  • Riaz, T., Shakoori, F. R. & Ali, S. S. Toxicity of phosphine against tolerant and susceptible populations of Trogoderma granarium collected from Punjab, Pakistan. Punjab Univ. J. Zool. 31, 2530 (2016).

    Google Scholar 

  • Pimentel, M. A. G., Faroni, L. R. D. A., Guedes, R. N. C., Sousa, A. H. & Tótola, M. R. Phosphine resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Stored Prod. Res. 45, 71–74 (2009).

    CAS 

    Google Scholar 

  • Ramya, R. S., Srivastava, C. & Subramanian, S. Monitoring of phosphine resistance in Indian populations of Tribolium castaneum (Herbst) from stored wheat. Indian J. Entomol. 80, 19–23 (2018).

    Google Scholar 

  • Lorini, I., Collins, P. J., Daglish, G. J., Nayak, M. K. & Pavic, H. Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Pest Manag. Sci. 63, 358–364 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Pimentel, M. A. G., Farroni, L. R. D. A., da Silva, F. H., Batista, M. D. & Guedes, R. N. C. Spread of phosphine resistance among Brazilian populations of three species of stored product insects. Neotrop. Entomol. 39, 101–107 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Emery, R. N., Nayak, M. K. & Holloway, J. C. Lessons learned from phosphine resistance monitoring in Australia. Stewart Postharvest. Rev. 3, 6 (2011).

    Google Scholar 

  • Hernandez Nopsa, J. F. et al. Ecological networks in stored grain: Key postharvest nodes for emerging pests, pathogens, and mycotoxins. BioScience 65, 985–1002 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, T. T., Collins, P. J., Duong, T. M., Schlipalius, D. I. & Ebert, P. R. Genetic conservation of phosphine resistance in the rice weevil Sitophilus oryzae (L.). J. Hered. 107, 228–237 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cato, A. J., Elliott, B., Nayak, M. K. & Phillips, T. W. Geographic variation in phosphine resistance among North American populations of the red flour beetle. J. Econ. Entomol. 110, 1359–1365 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Wakil, W., Kavallieratos, N. G., Usman, M., Gulzar, S. & El-Shafie, H. A. Detection of phosphine resistance in field populations of four key stored-grain insect pests in Pakistan. Insects 12(4), 288 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nath, N. S., Bhattacharya, I., Tuck, A. G., Schlipalius, D. I. & Ebert, P. R. Mechanism of phosphine toxicity. J. Toxic. https://doi.org/10.1155/2011/494168 (2011).

    Article 

    Google Scholar 

  • Sohn, H. Y., Kwon, C. S., Kwon, G. S., Lee, J. B. & Kim, E. Induction of oxidative stress by endosulphan and protective effect of lipid-soluble anti-oxidants against endosulphan-induced oxidative damage. Toxicol. Lett. 151, 357–365 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Chaudhry, M. Q. & Price, N. R. Comparison of the oxidant damage induced by phosphine and the uptake and tracheal exchange of 32P-radiolabelled phosphine in the susceptible and resistant strains of Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Pestic. Biochem. Physiol. 42, 167–179 (1992).

    CAS 

    Google Scholar 

  • Valmas, N., Zuryn, S. & Ebert, P. R. Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death. Toxicology 252, 33–39 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Hsu, C. H., Han, B., Liu, M., Yeh, C. & Casida, J. E. Phosphine-induced oxidative damage in rats: attenuation by melatonin. Free Radic. Biol. Med. 28, 636–642 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Hsu, C. H., Quistad, G. B. & Casida, J. E. Phosphine induced oxidative stress in Hepa 1c1c7 cells. Toxicol. Sci. 46, 204–210 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Finkel, T. & Holbrook, N. J. Oxidants oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, T., Li, L., Zhang, F. & Wang, Y. Transcriptional inhibition of the Catalase gene in phosphine-induced oxidative stress in Drosophila melanogaster. Pestic. Biochem. Phys. 124, 1–7 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Price, N. R. & Dance, S. J. Some biochemical aspects of phosphine action and resistance in three species of storage product beetles. Comp. Biochem. Physiol. 16, 277–281 (1983).

    Google Scholar 

  • Gao, X. W. Comparison of specific activity of catalase in the phosphine-resistant and phosphine-susceptible strains of red flour beetle Tribolium castaneum (Herbst) (2009).

  • Bolter, C. J. & Chefurka, W. The effect of phosphine treatment on superoxide dismutase, catalase, and peroxidase in the granary weevil, Sitophilus granarius. Pestic. Biochem. Physiol. 36, 52–60 (1990).

    CAS 

    Google Scholar 

  • Yadav, S. K., Srivastava, C. & Sabtharishi, S. Phosphine resistance and antioxidant enzyme activity in Trogoderma granarium Everts. J. Stored Prod. Res. 87, 101636 (2020).

    Google Scholar 

  • Crédito: Link de origem

    - Advertisement -

    Comentários estão fechados.