Hurricane risk assessment in a multi-hazard context for Dominica in the Caribbean

  • OCHA. Natural Disasters in Latin America and the Caribbean (2000–2019). https://reliefweb.int/sites/reliefweb.int/files/resources/20191203-ocha-desastres_naturales.pdf (Accessed 2 August 2021) (2020).

  • CRED. The human cost of disasters: An overview of the last 20 years (2000–2019). https://cred.be/sites/default/files/CRED-Disaster-ReportHuman-Cost2000-2019.pdf (2020).

  • ECLAC. Economic Commission for Latin America and the Caribbean. Financing and Planning for Disaster Risk Management in Caribbean Small Islands Developing States. https://www.cepal.org/ (Accessed 2 August 2021) (2020).

  • World Bank. Disaster Risk Management in the Caribbean: The World Bank’s Approaches and Instruments for Recovery and Resilience, December 5, 2018 (2018).

  • Gheuens, J., Nagabhatla, J. & Perera, E. D. P. Disaster-risk, water security challenges and strategies in Small Island Developing States (SIDS). Water 11(4), 637. https://doi.org/10.3390/w11040637 (2019).

    Article 

    Google Scholar 

  • Lindsay, J. M., Trumbull, R. B. & Siebel, W. Geochemistry and petrogenesis of late Pleistocene to recent volcanism in Southern Dominica, Lesser Antilles. J. Volcanol. Geotherm. Res. 148, 3–4. https://doi.org/10.1016/j.jvolgeores.2005.04.018 (2005).

    Article 
    CAS 

    Google Scholar 

  • Benson C., Clay E., Michael F. V. and Robertson A. W. Dominica: Natural, Disasters and Economic Development: in a Small Island State. Working paper series no. 2 (The World Bank, 2001).

  • GFDRR. Global Facility for Disaster Reduction and Recovery (GFDRR). Dominica—Rapid Damage and Impact Assessment: Tropical Storm Erika (English) (World Bank Group, 2015).

    Google Scholar 

  • Barclay, J. et al. Historical trajectories of disaster risk in Dominica. Int. J. Disaster Risk Sci. 10, 149–165. https://doi.org/10.1007/s13753-019-0215-z (2019).

    Article 

    Google Scholar 

  • De Graff, J. V., Bryce, R., Jibson, R. W., Mora, S. & Rogers, C. T. Landslides: Their extent and significance in the Caribbean. In Landslides: Extent and Economic Significance (eds Brabb, E. E. & Harrod, B. L.) 51–80 (AA Balkema, 1989).

    Google Scholar 

  • Charvériat C. Natural Disasters in Latin America and the Caribbean: An Overview of Risk Inter-American Development Bank, Banco Interamericano de Desarrollo (BID), Research department, Departamento de investigación, Working Paper #434 (2000).

  • Carby, B. Caribbean implementation of the Hyogo Framework for Action HFA mid-term review (University of the West Indies United Nations Development Programme, 2011).

    Google Scholar 

  • Eboh, H., Gallaher, C., Pingel, T. & Ashley, W. Risk perception in small island developing states: A case study in the Commonwealth of Dominica. Nat. Hazards 105, 889–914. https://doi.org/10.1007/s11069-020-04342-9 (2021).

    Article 

    Google Scholar 

  • Lugo, A. E., Applefield, M., Pool, D. J. & McDonald, R. B. The impact of Hurricane David on the forests of Dominica. Can. J. For. Res. 13(2), 201–211. https://doi.org/10.1139/x83-029 (1983).

    Article 

    Google Scholar 

  • Smith, R. B., Schafer, P., Kirshbaum, D. & Regina, E. Orographic enhancement of precipitation inside Hurricane Dean. J. Hydrometeorol. 10(3), 820–831 (2009).

    Article 
    ADS 

    Google Scholar 

  • Pasch R. J., Penny A. B., and Berg R. Hurricane Maria (2017). National Hurricane Center Tropical Cyclone Report. National Hurricane Center (2019).

  • CDERA. Summary of Impact of Hurricane “Dean” on CDERA Participating States. Response Actions, Recovery and Rehabilitation Needs Report Prepared by the Coordinating Unit of the Caribbean Disaster Emergency Response Agency (CDERA) August 22, 2007. (Accessed 22 August 2021) (2007).

  • ACAPS. Lessons Learned – October 2017 DOMINICA. Lessons Learned from Tropical Storm Erika (2017).

  • DMS. Rainfall data on Tropical Storm Erika, 26th to 27th August, 2015. Dominica Meteorological Service, Climate Section (2015).

  • Kambon A., Little V., Busby L., Johnson M. and Mitchell N. The Commonwealth of Dominica: social and livelihood assessment following tropical storm Erika. Government of the Commonwealth of Dominica with the Technical Assistance of the UNDP, Barbados and the OECS (2015).

  • PDNA. Post-Disaster Needs Assessment Hurricane Maria September 18, 2017. A Report by the Government of the Commonwealth of Dominica (2017).

  • ACAPS. Disaster Profile: Dominica. https://reliefweb.int/sites/reliefweb.int/files/resources/20180131_acaps_disaster_profile_dominica_v2.pdf (Accessed 17 August 2021) (2018).

  • van Westen C. and Zhang J. Tropical cyclone Maria. Inventory of landslides and flooded areas. https://unitar.org/unosat/node/44/2762 (Accessed 01 October 2021) (2018).

  • USAID COTS Development of landslide hazard and multi-hazard assessment for Dominica, West Indies. United States Agency for International Development, Caribbean Open Trade Support Program (2016).

  • Chiou, I. J. et al. Methodology of disaster risk assessment for debris flows in a river basin. Stoch. Environ. Res. Risk Assess. 29, 775–792. https://doi.org/10.1007/s00477-014-0932-1 (2015).

    Article 

    Google Scholar 

  • Wang, C. et al. Application of the hidden Markov model in a dynamic risk assessment of rainstorms in Dalian, China. Stoch. Environ. Res. Risk Assess. 32, 2045–2056. https://doi.org/10.1007/s00477-018-1530-4 (2018).

    Article 

    Google Scholar 

  • Ming, X., Xu, W. & Li, Y. Quantitative multi-hazard risk assessment with vulnerability surface and hazard joint return period. Stoch. Environ. Res. Risk Assess. 29, 35–44. https://doi.org/10.1007/s00477-014-0935-y (2015).

    Article 

    Google Scholar 

  • Kirschbaum, D. et al. The state of remote sensing capabilities of cascading hazards over high Mountain Asia. Front. Earth Sci. 7, 197. https://doi.org/10.3389/feart.2019.00197 (2019).

    Article 
    ADS 

    Google Scholar 

  • Gong, W., Jiang, J. & Yang, L. Dynamic risk assessment of compound hazards based on VFS–IEM–IDM: A case study of typhoon–rainstorm hazards in Shenzhen, China. Nat. Hazards Earth Syst. Sci. 22, 3271–3283. https://doi.org/10.5194/nhess-22-3271-2022 (2022).

    Article 
    ADS 

    Google Scholar 

  • Crichton, D. “The risk triangle”, Natural disaster management: A presentation to commemorate the International Decade for Natural Disaster Reduction (IDNDR), pp 1990–2000 (1999).

  • Kron, W. Flood risk = hazard x exposure x vulnerability. In Flood Defence (eds Wu, M. et al.) 82–97 (Science Press, 2002).

    Google Scholar 

  • van Westen, C. et al. Medium-scale multi-hazard risk assessment of gravitational processes. In Mountain Risks: From Prediction to Management and Governance Vol. 34 (eds van Asch, T. et al.) (Advances in Natural and Technological Hazards Research, 2014). https://doi.org/10.1007/978-94-007-6769-0_7.

    Chapter 

    Google Scholar 

  • Granger, K., Jones, T., Leiba, M. & Scott, G. Community risk in Cairns: A multi-hazard risk assessment. Aust. Geol. Surv. Organ. 14, 25–26 (1999).

    Google Scholar 

  • Buck, K. D. & Summers, J. K. Application of a multi-hazard risk assessment for local planning. Geomat. Nat. Hazards Risk 11(1), 2058–2078. https://doi.org/10.1080/19475705.2020.1828190 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lung, T., Lavalle, C., Hiederer, R., Dosio, A. & Bouwer, L. M. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Glob. Environ. Change 23(2), 522–536. https://doi.org/10.1016/j.gloenvcha.2012.11.009 (2013).

    Article 

    Google Scholar 

  • Koks, E. E. et al. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 10, 2677. https://doi.org/10.1038/s41467-019-10442-3 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, R. & Glade, T. Multi-hazard analysis in natural risk assessments. In Risk Analysis IV (ed. Brebbia, C. A.) (WIT Press, 2004).

    Google Scholar 

  • Kappes, M. S. et al. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 (2012).

    Article 

    Google Scholar 

  • Tilloy, L., Malamud, B. D., Winter, H. & Joly-Laugel, A. A review of quantification methodologies for multi-hazard interrelationships. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2019.102881 (2019).

    Article 

    Google Scholar 

  • Liu, B., Siu, Y. L. & Mitchell, G. Hazard interaction analysis for multi-hazard risk assessment: A systematic classification based on hazard-forming environment. Nat. Hazards Earth Syst. Sci. 16, 629–642. https://doi.org/10.5194/nhess-16-629-2016 (2016).

    Article 
    ADS 

    Google Scholar 

  • Ming, X., Liang, Q., Dawson, R., Xia, X. & Hou, J. A quantitative multi-hazard risk assessment framework for compound flooding considering hazard inter-dependencies and interactions. J. Hydrol. 607, 127477 (2022).

    Article 

    Google Scholar 

  • DFID. Multi-Hazard Disaster Risk Assessment (v2), UKaid. Published by the Department for International Development 2012. https://assets.publishing.service.gov.uk/ (Accessed 04 March 2023) (2012).

  • Zhou, Y., Liu, Y., Wu, W. & Li, N. Integrated risk assessment of multi-hazards in China. Nat. Hazards 78, 257–280. https://doi.org/10.1007/s11069-015-1713-y (2015).

    Article 

    Google Scholar 

  • Hussain, M. A. et al. Review of spatial variations of multiple natural hazards and risk management strategies in Pakistan. Water 15, 407. https://doi.org/10.3390/w15030407 (2023).

    Article 

    Google Scholar 

  • Kelman, I., Gaillard, J. C. & Mercer, J. Climate change’s role in disaster risk reduction’s future: Beyond vulnerability and resilience. Int. J. Disaster Risk Sci. 6(1), 21–27 (2015).

    Article 

    Google Scholar 

  • Mercer, J., Kelman, I., Taranis, L. & Suchet-Pearson, S. Framework for integrating indigenous and scientific knowledge for disaster risk reduction. Disasters 34, 214–239. https://doi.org/10.1111/j.1467-7717.2009.01126.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Chambers, R. The origins and practice of participatory rural appraisal. World Dev. 22(7), 953–969 (1994).

    Article 

    Google Scholar 

  • Ahmed, B. et al. Indigenous mountain people’s risk perception to environmental hazards in border conflict areas. Int. J. Disaster Risk Reduct. https://doi.org/10.1016/j.ijdrr.2019.01.002 (2019).

    Article 

    Google Scholar 

  • Gill, J. C. & Malamud, B. D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 7, 659–679. https://doi.org/10.5194/esd-7-659-2016 (2016).

    Article 
    ADS 

    Google Scholar 

  • Barrantes, G. Multi-hazard model for developing countries. Nat. Hazards 92, 1081–1095. https://doi.org/10.1007/s11069-018-3239-6 (2018).

    Article 

    Google Scholar 

  • Marzocchi, W., Garcia-Aristizabal, A., Gasparini, P., Mastellone, M. L. & Di Ruocco, A. Basic principles of multi-risk assessment: A case study in Italy. Nat. Hazards 62(2), 551–573 (2012).

    Article 

    Google Scholar 

  • Pourghasemi, H. R. et al. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Sci. Rep. 10, 3203. https://doi.org/10.1038/s41598-020-60191-3 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mignan, A., Komendantova, N., Scolobig, A. & Fleming, K. Multi-Risk Assessment and Governance (World Scientific, 2017).

    Book 

    Google Scholar 

  • van Westen, C. J. & Greiving, S. Multi-hazard risk assessment and decision making. Environ. Hazards Methodol. Risk Assess. Manag. https://doi.org/10.2166/9781780407135_0031 (2017).

    Article 

    Google Scholar 

  • Alam, A., Sammonds, P. & Ahmed, B. Cyclone risk assessment of the Cox’s Bazar and Rohingya refugee camps in southeast Bangladesh. Sci. Total Environ. 704, 135360. https://doi.org/10.1016/j.scitotenv.2019.135360 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Blaikie, P., Cannon, T., Davis, I. & Wisner, B. At Risk: Natural Hazards, Peoples’ Vulnerability and Disasters (Routledge, 1994).

    Google Scholar 

  • Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters 2nd edn. (Routledge, 2004).

    Google Scholar 

  • Ahmed, B. & Kelman, I. Measuring community vulnerability to environmental hazards: A method for combining quantitative and qualitative data. Nat. Hazards Rev. 19(3), 04018008 (2018).

    Article 

    Google Scholar 

  • UNDRR. https://www.undrr.org/building-risk-knowledge/understanding-risk (Accessed 19 August 2021) (2019).

  • Paul, B. K. Why relatively fewer people died? The case of Bangladesh’s Cyclone Sidr. Nat. Hazards 50(2), 289–304. https://doi.org/10.1007/s11069-008-9340-5 (2009).

    Article 

    Google Scholar 

  • Peduzzi, P. et al. Global trends in tropical cyclone risk. Nat. Clim. Change https://doi.org/10.1038/NCLIMATE1410 (2012).

    Article 

    Google Scholar 

  • Smith, R. B. et al. Orographic precipitation in the tropics: The Dominica experiment. Bull. Am. Meteorol. Soc. 93(10), 1567–1579 (2012).

    Article 
    ADS 

    Google Scholar 

  • Seo, S. N. & Bakkensen, L. A. Is tropical cyclone surge, not intensity, what kills so many people in south Asia?. Weather Clim. Soc. https://doi.org/10.1175/WCAS-D-16-0059.1 (2016).

    Article 

    Google Scholar 

  • Zachry, B. C., Booth, W. J., Rhome, J. R. & Sharon, T. M. A national view of storm surge risk and inundation. Weather Clim. Soc. 7, 109–117. https://doi.org/10.1175/WCAS-D14-00049.1 (2015).

    Article 
    ADS 

    Google Scholar 

  • Nugent, A. D. & Rios-Berrios, R. Factors leading to extreme precipitation on Dominica from tropical storm Erika (2015). Mon. Weather Rev. 146(2), 525–541 (2018).

    Article 
    ADS 

    Google Scholar 

  • Ahmed, B. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides 12, 1077–1095. https://doi.org/10.1007/s10346-014-0521-x (2015).

    Article 

    Google Scholar 

  • Ahmed, B. The root causes of landslide vulnerability in Bangladesh. Landslides 18, 1707–1720 (2021).

    Article 

    Google Scholar 

  • Lee, S. & Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4, 33–41. https://doi.org/10.1007/s10346-006-0047-y (2007).

    Article 

    Google Scholar 

  • Sheng, M. et al. Landslide susceptibility prediction based on frequency ratio method and C5.0 decision tree model. Front. Earth Sci. https://doi.org/10.3389/feart.2022.918386 (2022).

    Article 

    Google Scholar 

  • Huang, F., Yao, C., Liu, W., Li, Y. & Liu, X. Landslide susceptibility assessment in the Nantian area of China: A comparison of frequency ratio model and support vector machine. Geomat. Nat. Hazards Risk 9(1), 919–938. https://doi.org/10.1080/19475705.2018.1482963 (2018).

    Article 

    Google Scholar 

  • Mikoš, M. & Bezak, N. Debris flow modelling using RAMMS model in the Alpine environment with focus on the model parameters and main characteristics. Front. Earth Sci. https://doi.org/10.3389/feart.2020.605061 (2021).

    Article 

    Google Scholar 

  • RAMMS Rapid Mass Movements Simulation (RAMMS). A numerical model for debris flows in research and practice. User Manual v1.7.0 Debris Flow (2017).

  • Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24, 43–69 (1979).

    Article 

    Google Scholar 

  • Grabs, T., Seibert, J., Bishop, K. & Laudon, H. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. J. Hydrol. 373, 15–23 (2009).

    Article 
    ADS 

    Google Scholar 

  • Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A. & Mitchell, D. Topography wetness index application in flood-risk-based land use planning. Appl. Spat. Anal. 9, 39–54. https://doi.org/10.1007/s12061-014-9130-2 (2016).

    Article 

    Google Scholar 

  • Kelleher, C. & McPhillips, L. Exploring the application of topographic indices in urban areas as indicators of pluvial flooding locations. Hydrol. Process. 34, 780–794. https://doi.org/10.1002/hyp.13628 (2020).

    Article 
    ADS 

    Google Scholar 

  • Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112. https://doi.org/10.5194/hess-10-101-2006 (2006).

    Article 
    ADS 

    Google Scholar 

  • HEC-RAS. User’s Manual. https://www.hec.usace.army.mil/ (Accessed 27 May 2023) (2023).

  • Hicks, F. E. & Peacock, T. Suitability of HEC-RAS for flood forecasting. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 30(2), 159–174. https://doi.org/10.4296/cwrj3002159 (2005).

    Article 

    Google Scholar 

  • Fan, C., Wang, W. S. & Liu, K. F. R. Sensitivity analysis and water quality modeling of a Tidal river using a modified Streeter-Phelps equation with HEC-RAS-calculated hydraulic characteristics. Environ. Model. Assess. 17, 639–651. https://doi.org/10.1007/s10666-012-9316-4 (2012).

    Article 

    Google Scholar 

  • Bathrellos, G. D., Skilodimou, H. D., Chousianitis, K., Youssef, A. M. & Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.10.025 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Saaty, T. L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008).

    Google Scholar 

  • Ikeda, K. Gender differences in human loss and vulnerability in natural disasters: A case study from Bangladesh. Indian J. Gend. Stud. 2(2), 171–193. https://doi.org/10.1177/097152159500200202 (1995).

    Article 

    Google Scholar 

  • Ronoh, S., Gaillard, J. C. & Marlowe, J. Children with disabilities and disaster risk reduction: A review. Int. J. Disaster Risk Sci. 6, 38–48. https://doi.org/10.1007/s13753-015-0042-9 (2015).

    Article 

    Google Scholar 

  • OCHA. Population Data: Facebook Connectivity Lab and Center for International Earth Science Information Network – CIESIN – Columbia University. 2016. High Resolution Settlement Layer (HRSL). Source imagery for HRSL© 2016 DigitalGlobe (2020).

  • Heidarzadeh, M., Teeuw, R., Day, S. & Solana, C. Storm wave runups and sea level variations for the September 2017 Hurricane Maria along the coast of Dominica, Eastern Caribbean Sea: Evidence from field surveys and sea-level data analysis. Coast. Eng. J. 60(3), 371–384 (2018).

    Article 

    Google Scholar 

  • Christen, M., Kowalski, J. & Bartelt, P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63, 1–2. https://doi.org/10.1016/j.coldregions.2010.04.005 (2010).

    Article 

    Google Scholar 

  • Alam, A., Ahmed, B. & Sammonds, P. Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quat. Int. https://doi.org/10.1016/j.quaint.2020.04.047 (2020).

    Article 

    Google Scholar 

  • WMO. New report shows impacts of climate change and extreme weather in Latin America and Caribbean. https://public.wmo.int/ (Accessed 10 December 2021) (2021).

  • Robinson, S. Climate change adaptation in SIDS: A systematic review of the literature pre and post the IPCC Fifth Assessment Report. WIREs Clim. Change 11, e653. https://doi.org/10.1002/wcc.653 (2020).

    Article 

    Google Scholar 

  • IMF. Building resilience to natural disasters in the Caribbean Requires greater preparedness by Muñoz S. and Ötker İ. https://www.imf.org/ (Accessed 14 August 2021) (2018).

  • Parham, M., Teeuw, R., Solana, C. & Day, S. Quantifying the impact of educational methods for disaster risk reduction: A longitudinal study assessing the impact of teaching methods on student hazard perceptions. Int. J. Disaster Risk Reduct. 52, n101978 (2021).

    Article 

    Google Scholar 

  • Gaillard, J. C. Alternative paradigms of volcanic risk perception: The case of Mt. Pinatubo in the Philippines. J. Volcanol. Geotherm. Res. 172(3–4), 315–328 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fordham, M. H. The intersection of gender and social class in disaster: Balancing resilience and vulnerability. Int. J. Mass Emerg. Disasters 17(1), 15–36 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Finucane, M. L., Slovic, P., Mertz, C. K., Flynn, J. & Satterfield, T. A. Gender, race, and perceived risk: The ‘white male’ effect. Health Risk Soc. 2(2), 159–172 (2000).

    Article 

    Google Scholar 

  • Sjöberg, L. Factors in risk perception. Risk Anal. 20(1), 1–12 (2000).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Martin, H., Ellis, M. & Delpesh, C. Risk perception in a multi-hazard environment: A case study of Maraval, Trinidad, The West Indian. J. Eng. 39(1), 32–43 (2016).

    Google Scholar 

  • Stancioff, C. et al. Local perceptions of climate change impacts in St. Kitts (Caribbean Sea) and Malé, Maldives (Indian Ocean). J. Atmos. 9(12), 459 (2018).

    ADS 

    Google Scholar 

  • Shultz, J. M. et al. Mitigating tropical cyclone risks and health consequences: Urgencies and innovations. Lancet Planet. Health 2, e103-104 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Shultz, J. M. et al. Hurricane risks, health consequences, and response challenges for small island based populations: Observations from the 2017 Atlantic hurricane season. Disaster Med. Public Health Prep. 13(1), 5–17. https://doi.org/10.1017/dmp.2018.28 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Crédito: Link de origem

    - Advertisement -

    Comentários estão fechados.