OCHA. Natural Disasters in Latin America and the Caribbean (2000–2019). https://reliefweb.int/sites/reliefweb.int/files/resources/20191203-ocha-desastres_naturales.pdf (Accessed 2 August 2021) (2020).
CRED. The human cost of disasters: An overview of the last 20 years (2000–2019). https://cred.be/sites/default/files/CRED-Disaster-ReportHuman-Cost2000-2019.pdf (2020).
ECLAC. Economic Commission for Latin America and the Caribbean. Financing and Planning for Disaster Risk Management in Caribbean Small Islands Developing States. https://www.cepal.org/ (Accessed 2 August 2021) (2020).
World Bank. Disaster Risk Management in the Caribbean: The World Bank’s Approaches and Instruments for Recovery and Resilience, December 5, 2018 (2018).
Gheuens, J., Nagabhatla, J. & Perera, E. D. P. Disaster-risk, water security challenges and strategies in Small Island Developing States (SIDS). Water 11(4), 637. https://doi.org/10.3390/w11040637 (2019).
Google Scholar
Lindsay, J. M., Trumbull, R. B. & Siebel, W. Geochemistry and petrogenesis of late Pleistocene to recent volcanism in Southern Dominica, Lesser Antilles. J. Volcanol. Geotherm. Res. 148, 3–4. https://doi.org/10.1016/j.jvolgeores.2005.04.018 (2005).
Google Scholar
Benson C., Clay E., Michael F. V. and Robertson A. W. Dominica: Natural, Disasters and Economic Development: in a Small Island State. Working paper series no. 2 (The World Bank, 2001).
GFDRR. Global Facility for Disaster Reduction and Recovery (GFDRR). Dominica—Rapid Damage and Impact Assessment: Tropical Storm Erika (English) (World Bank Group, 2015).
Barclay, J. et al. Historical trajectories of disaster risk in Dominica. Int. J. Disaster Risk Sci. 10, 149–165. https://doi.org/10.1007/s13753-019-0215-z (2019).
Google Scholar
De Graff, J. V., Bryce, R., Jibson, R. W., Mora, S. & Rogers, C. T. Landslides: Their extent and significance in the Caribbean. In Landslides: Extent and Economic Significance (eds Brabb, E. E. & Harrod, B. L.) 51–80 (AA Balkema, 1989).
Charvériat C. Natural Disasters in Latin America and the Caribbean: An Overview of Risk Inter-American Development Bank, Banco Interamericano de Desarrollo (BID), Research department, Departamento de investigación, Working Paper #434 (2000).
Carby, B. Caribbean implementation of the Hyogo Framework for Action HFA mid-term review (University of the West Indies United Nations Development Programme, 2011).
Eboh, H., Gallaher, C., Pingel, T. & Ashley, W. Risk perception in small island developing states: A case study in the Commonwealth of Dominica. Nat. Hazards 105, 889–914. https://doi.org/10.1007/s11069-020-04342-9 (2021).
Google Scholar
Lugo, A. E., Applefield, M., Pool, D. J. & McDonald, R. B. The impact of Hurricane David on the forests of Dominica. Can. J. For. Res. 13(2), 201–211. https://doi.org/10.1139/x83-029 (1983).
Google Scholar
Smith, R. B., Schafer, P., Kirshbaum, D. & Regina, E. Orographic enhancement of precipitation inside Hurricane Dean. J. Hydrometeorol. 10(3), 820–831 (2009).
Google Scholar
Pasch R. J., Penny A. B., and Berg R. Hurricane Maria (2017). National Hurricane Center Tropical Cyclone Report. National Hurricane Center (2019).
CDERA. Summary of Impact of Hurricane “Dean” on CDERA Participating States. Response Actions, Recovery and Rehabilitation Needs Report Prepared by the Coordinating Unit of the Caribbean Disaster Emergency Response Agency (CDERA) August 22, 2007. (Accessed 22 August 2021) (2007).
ACAPS. Lessons Learned – October 2017 DOMINICA. Lessons Learned from Tropical Storm Erika (2017).
DMS. Rainfall data on Tropical Storm Erika, 26th to 27th August, 2015. Dominica Meteorological Service, Climate Section (2015).
Kambon A., Little V., Busby L., Johnson M. and Mitchell N. The Commonwealth of Dominica: social and livelihood assessment following tropical storm Erika. Government of the Commonwealth of Dominica with the Technical Assistance of the UNDP, Barbados and the OECS (2015).
PDNA. Post-Disaster Needs Assessment Hurricane Maria September 18, 2017. A Report by the Government of the Commonwealth of Dominica (2017).
ACAPS. Disaster Profile: Dominica. https://reliefweb.int/sites/reliefweb.int/files/resources/20180131_acaps_disaster_profile_dominica_v2.pdf (Accessed 17 August 2021) (2018).
van Westen C. and Zhang J. Tropical cyclone Maria. Inventory of landslides and flooded areas. https://unitar.org/unosat/node/44/2762 (Accessed 01 October 2021) (2018).
USAID COTS Development of landslide hazard and multi-hazard assessment for Dominica, West Indies. United States Agency for International Development, Caribbean Open Trade Support Program (2016).
Chiou, I. J. et al. Methodology of disaster risk assessment for debris flows in a river basin. Stoch. Environ. Res. Risk Assess. 29, 775–792. https://doi.org/10.1007/s00477-014-0932-1 (2015).
Google Scholar
Wang, C. et al. Application of the hidden Markov model in a dynamic risk assessment of rainstorms in Dalian, China. Stoch. Environ. Res. Risk Assess. 32, 2045–2056. https://doi.org/10.1007/s00477-018-1530-4 (2018).
Google Scholar
Ming, X., Xu, W. & Li, Y. Quantitative multi-hazard risk assessment with vulnerability surface and hazard joint return period. Stoch. Environ. Res. Risk Assess. 29, 35–44. https://doi.org/10.1007/s00477-014-0935-y (2015).
Google Scholar
Kirschbaum, D. et al. The state of remote sensing capabilities of cascading hazards over high Mountain Asia. Front. Earth Sci. 7, 197. https://doi.org/10.3389/feart.2019.00197 (2019).
Google Scholar
Gong, W., Jiang, J. & Yang, L. Dynamic risk assessment of compound hazards based on VFS–IEM–IDM: A case study of typhoon–rainstorm hazards in Shenzhen, China. Nat. Hazards Earth Syst. Sci. 22, 3271–3283. https://doi.org/10.5194/nhess-22-3271-2022 (2022).
Google Scholar
Crichton, D. “The risk triangle”, Natural disaster management: A presentation to commemorate the International Decade for Natural Disaster Reduction (IDNDR), pp 1990–2000 (1999).
Kron, W. Flood risk = hazard x exposure x vulnerability. In Flood Defence (eds Wu, M. et al.) 82–97 (Science Press, 2002).
van Westen, C. et al. Medium-scale multi-hazard risk assessment of gravitational processes. In Mountain Risks: From Prediction to Management and Governance Vol. 34 (eds van Asch, T. et al.) (Advances in Natural and Technological Hazards Research, 2014). https://doi.org/10.1007/978-94-007-6769-0_7.
Google Scholar
Granger, K., Jones, T., Leiba, M. & Scott, G. Community risk in Cairns: A multi-hazard risk assessment. Aust. Geol. Surv. Organ. 14, 25–26 (1999).
Buck, K. D. & Summers, J. K. Application of a multi-hazard risk assessment for local planning. Geomat. Nat. Hazards Risk 11(1), 2058–2078. https://doi.org/10.1080/19475705.2020.1828190 (2020).
Google Scholar
Lung, T., Lavalle, C., Hiederer, R., Dosio, A. & Bouwer, L. M. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Glob. Environ. Change 23(2), 522–536. https://doi.org/10.1016/j.gloenvcha.2012.11.009 (2013).
Google Scholar
Koks, E. E. et al. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 10, 2677. https://doi.org/10.1038/s41467-019-10442-3 (2019).
Google Scholar
Bell, R. & Glade, T. Multi-hazard analysis in natural risk assessments. In Risk Analysis IV (ed. Brebbia, C. A.) (WIT Press, 2004).
Kappes, M. S. et al. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 (2012).
Google Scholar
Tilloy, L., Malamud, B. D., Winter, H. & Joly-Laugel, A. A review of quantification methodologies for multi-hazard interrelationships. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2019.102881 (2019).
Google Scholar
Liu, B., Siu, Y. L. & Mitchell, G. Hazard interaction analysis for multi-hazard risk assessment: A systematic classification based on hazard-forming environment. Nat. Hazards Earth Syst. Sci. 16, 629–642. https://doi.org/10.5194/nhess-16-629-2016 (2016).
Google Scholar
Ming, X., Liang, Q., Dawson, R., Xia, X. & Hou, J. A quantitative multi-hazard risk assessment framework for compound flooding considering hazard inter-dependencies and interactions. J. Hydrol. 607, 127477 (2022).
Google Scholar
DFID. Multi-Hazard Disaster Risk Assessment (v2), UKaid. Published by the Department for International Development 2012. https://assets.publishing.service.gov.uk/ (Accessed 04 March 2023) (2012).
Zhou, Y., Liu, Y., Wu, W. & Li, N. Integrated risk assessment of multi-hazards in China. Nat. Hazards 78, 257–280. https://doi.org/10.1007/s11069-015-1713-y (2015).
Google Scholar
Hussain, M. A. et al. Review of spatial variations of multiple natural hazards and risk management strategies in Pakistan. Water 15, 407. https://doi.org/10.3390/w15030407 (2023).
Google Scholar
Kelman, I., Gaillard, J. C. & Mercer, J. Climate change’s role in disaster risk reduction’s future: Beyond vulnerability and resilience. Int. J. Disaster Risk Sci. 6(1), 21–27 (2015).
Google Scholar
Mercer, J., Kelman, I., Taranis, L. & Suchet-Pearson, S. Framework for integrating indigenous and scientific knowledge for disaster risk reduction. Disasters 34, 214–239. https://doi.org/10.1111/j.1467-7717.2009.01126.x (2010).
Google Scholar
Chambers, R. The origins and practice of participatory rural appraisal. World Dev. 22(7), 953–969 (1994).
Google Scholar
Ahmed, B. et al. Indigenous mountain people’s risk perception to environmental hazards in border conflict areas. Int. J. Disaster Risk Reduct. https://doi.org/10.1016/j.ijdrr.2019.01.002 (2019).
Google Scholar
Gill, J. C. & Malamud, B. D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 7, 659–679. https://doi.org/10.5194/esd-7-659-2016 (2016).
Google Scholar
Barrantes, G. Multi-hazard model for developing countries. Nat. Hazards 92, 1081–1095. https://doi.org/10.1007/s11069-018-3239-6 (2018).
Google Scholar
Marzocchi, W., Garcia-Aristizabal, A., Gasparini, P., Mastellone, M. L. & Di Ruocco, A. Basic principles of multi-risk assessment: A case study in Italy. Nat. Hazards 62(2), 551–573 (2012).
Google Scholar
Pourghasemi, H. R. et al. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Sci. Rep. 10, 3203. https://doi.org/10.1038/s41598-020-60191-3 (2020).
Google Scholar
Mignan, A., Komendantova, N., Scolobig, A. & Fleming, K. Multi-Risk Assessment and Governance (World Scientific, 2017).
Google Scholar
van Westen, C. J. & Greiving, S. Multi-hazard risk assessment and decision making. Environ. Hazards Methodol. Risk Assess. Manag. https://doi.org/10.2166/9781780407135_0031 (2017).
Google Scholar
Alam, A., Sammonds, P. & Ahmed, B. Cyclone risk assessment of the Cox’s Bazar and Rohingya refugee camps in southeast Bangladesh. Sci. Total Environ. 704, 135360. https://doi.org/10.1016/j.scitotenv.2019.135360 (2019).
Google Scholar
Blaikie, P., Cannon, T., Davis, I. & Wisner, B. At Risk: Natural Hazards, Peoples’ Vulnerability and Disasters (Routledge, 1994).
Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters 2nd edn. (Routledge, 2004).
Ahmed, B. & Kelman, I. Measuring community vulnerability to environmental hazards: A method for combining quantitative and qualitative data. Nat. Hazards Rev. 19(3), 04018008 (2018).
Google Scholar
UNDRR. https://www.undrr.org/building-risk-knowledge/understanding-risk (Accessed 19 August 2021) (2019).
Paul, B. K. Why relatively fewer people died? The case of Bangladesh’s Cyclone Sidr. Nat. Hazards 50(2), 289–304. https://doi.org/10.1007/s11069-008-9340-5 (2009).
Google Scholar
Peduzzi, P. et al. Global trends in tropical cyclone risk. Nat. Clim. Change https://doi.org/10.1038/NCLIMATE1410 (2012).
Google Scholar
Smith, R. B. et al. Orographic precipitation in the tropics: The Dominica experiment. Bull. Am. Meteorol. Soc. 93(10), 1567–1579 (2012).
Google Scholar
Seo, S. N. & Bakkensen, L. A. Is tropical cyclone surge, not intensity, what kills so many people in south Asia?. Weather Clim. Soc. https://doi.org/10.1175/WCAS-D-16-0059.1 (2016).
Google Scholar
Zachry, B. C., Booth, W. J., Rhome, J. R. & Sharon, T. M. A national view of storm surge risk and inundation. Weather Clim. Soc. 7, 109–117. https://doi.org/10.1175/WCAS-D14-00049.1 (2015).
Google Scholar
Nugent, A. D. & Rios-Berrios, R. Factors leading to extreme precipitation on Dominica from tropical storm Erika (2015). Mon. Weather Rev. 146(2), 525–541 (2018).
Google Scholar
Ahmed, B. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides 12, 1077–1095. https://doi.org/10.1007/s10346-014-0521-x (2015).
Google Scholar
Ahmed, B. The root causes of landslide vulnerability in Bangladesh. Landslides 18, 1707–1720 (2021).
Google Scholar
Lee, S. & Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4, 33–41. https://doi.org/10.1007/s10346-006-0047-y (2007).
Google Scholar
Sheng, M. et al. Landslide susceptibility prediction based on frequency ratio method and C5.0 decision tree model. Front. Earth Sci. https://doi.org/10.3389/feart.2022.918386 (2022).
Google Scholar
Huang, F., Yao, C., Liu, W., Li, Y. & Liu, X. Landslide susceptibility assessment in the Nantian area of China: A comparison of frequency ratio model and support vector machine. Geomat. Nat. Hazards Risk 9(1), 919–938. https://doi.org/10.1080/19475705.2018.1482963 (2018).
Google Scholar
Mikoš, M. & Bezak, N. Debris flow modelling using RAMMS model in the Alpine environment with focus on the model parameters and main characteristics. Front. Earth Sci. https://doi.org/10.3389/feart.2020.605061 (2021).
Google Scholar
RAMMS Rapid Mass Movements Simulation (RAMMS). A numerical model for debris flows in research and practice. User Manual v1.7.0 Debris Flow (2017).
Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24, 43–69 (1979).
Google Scholar
Grabs, T., Seibert, J., Bishop, K. & Laudon, H. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. J. Hydrol. 373, 15–23 (2009).
Google Scholar
Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A. & Mitchell, D. Topography wetness index application in flood-risk-based land use planning. Appl. Spat. Anal. 9, 39–54. https://doi.org/10.1007/s12061-014-9130-2 (2016).
Google Scholar
Kelleher, C. & McPhillips, L. Exploring the application of topographic indices in urban areas as indicators of pluvial flooding locations. Hydrol. Process. 34, 780–794. https://doi.org/10.1002/hyp.13628 (2020).
Google Scholar
Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112. https://doi.org/10.5194/hess-10-101-2006 (2006).
Google Scholar
HEC-RAS. User’s Manual. https://www.hec.usace.army.mil/ (Accessed 27 May 2023) (2023).
Hicks, F. E. & Peacock, T. Suitability of HEC-RAS for flood forecasting. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 30(2), 159–174. https://doi.org/10.4296/cwrj3002159 (2005).
Google Scholar
Fan, C., Wang, W. S. & Liu, K. F. R. Sensitivity analysis and water quality modeling of a Tidal river using a modified Streeter-Phelps equation with HEC-RAS-calculated hydraulic characteristics. Environ. Model. Assess. 17, 639–651. https://doi.org/10.1007/s10666-012-9316-4 (2012).
Google Scholar
Bathrellos, G. D., Skilodimou, H. D., Chousianitis, K., Youssef, A. M. & Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.10.025 (2016).
Google Scholar
Saaty, T. L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008).
Ikeda, K. Gender differences in human loss and vulnerability in natural disasters: A case study from Bangladesh. Indian J. Gend. Stud. 2(2), 171–193. https://doi.org/10.1177/097152159500200202 (1995).
Google Scholar
Ronoh, S., Gaillard, J. C. & Marlowe, J. Children with disabilities and disaster risk reduction: A review. Int. J. Disaster Risk Sci. 6, 38–48. https://doi.org/10.1007/s13753-015-0042-9 (2015).
Google Scholar
OCHA. Population Data: Facebook Connectivity Lab and Center for International Earth Science Information Network – CIESIN – Columbia University. 2016. High Resolution Settlement Layer (HRSL). Source imagery for HRSL© 2016 DigitalGlobe (2020).
Heidarzadeh, M., Teeuw, R., Day, S. & Solana, C. Storm wave runups and sea level variations for the September 2017 Hurricane Maria along the coast of Dominica, Eastern Caribbean Sea: Evidence from field surveys and sea-level data analysis. Coast. Eng. J. 60(3), 371–384 (2018).
Google Scholar
Christen, M., Kowalski, J. & Bartelt, P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63, 1–2. https://doi.org/10.1016/j.coldregions.2010.04.005 (2010).
Google Scholar
Alam, A., Ahmed, B. & Sammonds, P. Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quat. Int. https://doi.org/10.1016/j.quaint.2020.04.047 (2020).
Google Scholar
WMO. New report shows impacts of climate change and extreme weather in Latin America and Caribbean. https://public.wmo.int/ (Accessed 10 December 2021) (2021).
Robinson, S. Climate change adaptation in SIDS: A systematic review of the literature pre and post the IPCC Fifth Assessment Report. WIREs Clim. Change 11, e653. https://doi.org/10.1002/wcc.653 (2020).
Google Scholar
IMF. Building resilience to natural disasters in the Caribbean Requires greater preparedness by Muñoz S. and Ötker İ. https://www.imf.org/ (Accessed 14 August 2021) (2018).
Parham, M., Teeuw, R., Solana, C. & Day, S. Quantifying the impact of educational methods for disaster risk reduction: A longitudinal study assessing the impact of teaching methods on student hazard perceptions. Int. J. Disaster Risk Reduct. 52, n101978 (2021).
Google Scholar
Gaillard, J. C. Alternative paradigms of volcanic risk perception: The case of Mt. Pinatubo in the Philippines. J. Volcanol. Geotherm. Res. 172(3–4), 315–328 (2008).
Google Scholar
Fordham, M. H. The intersection of gender and social class in disaster: Balancing resilience and vulnerability. Int. J. Mass Emerg. Disasters 17(1), 15–36 (1999).
Google Scholar
Finucane, M. L., Slovic, P., Mertz, C. K., Flynn, J. & Satterfield, T. A. Gender, race, and perceived risk: The ‘white male’ effect. Health Risk Soc. 2(2), 159–172 (2000).
Google Scholar
Sjöberg, L. Factors in risk perception. Risk Anal. 20(1), 1–12 (2000).
Google Scholar
Martin, H., Ellis, M. & Delpesh, C. Risk perception in a multi-hazard environment: A case study of Maraval, Trinidad, The West Indian. J. Eng. 39(1), 32–43 (2016).
Stancioff, C. et al. Local perceptions of climate change impacts in St. Kitts (Caribbean Sea) and Malé, Maldives (Indian Ocean). J. Atmos. 9(12), 459 (2018).
Google Scholar
Shultz, J. M. et al. Mitigating tropical cyclone risks and health consequences: Urgencies and innovations. Lancet Planet. Health 2, e103-104 (2018).
Google Scholar
Shultz, J. M. et al. Hurricane risks, health consequences, and response challenges for small island based populations: Observations from the 2017 Atlantic hurricane season. Disaster Med. Public Health Prep. 13(1), 5–17. https://doi.org/10.1017/dmp.2018.28 (2018).
Google Scholar
Crédito: Link de origem



Comentários estão fechados.